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1. INTRODUCTION

This paper presents a new recursive Newton-Euler rocedure for the formulation and solution of
manipulator dynamical equations. The procedure includes rotational and translational joints and a
topological tree. This model was verified analytically using a planar two-link manipulator. Also, the
model was tested numerically against the Walker-Orin (ref. 1) model usinF the Shuttle Remote
Manipulator System data. TKe ﬁinge accelerations obtained from both models were identical. The
computational requirements of the model vary linearly with the number of joints. The computational
efficiency of this method exceeds that of Walker-Orin methods.

This procedure may be viewed as a considerable generalization of Armstrong’s method (ref. 2). A
s:lx-by(;‘sii)i formulation is adopted which enhances both the computational efficiency and simplicity of
the model.

In section 2.1, we begin with assuming an open chain, rotational joints, and prescribed base
motion. In section 2.2, the procedure is extended to translational joints. Section 2.3 extends the
formulation to a topological tree. Section 3 includes the algorithm summary and computational
efficiency. The appendix contains descriptions of coordinate frames and notations and a summary of the
standard kinematic relations used in the algorithm.

2. DYNAMICS FORMULATION

Let’s begin with a quick look at the procedure. The first step is to set up the equations of motion
for a generic link i (rotational) in the i — I frame in a 6 X 6 form, namely, S U, = F* Uisaé6 x1
vector consisting of the reaction loads from link i — 1 on link i and 6, the hinge acceleration of link i. S,
is a coefficient matrix, and F;* consists of the mass and inertia of link i (inertial parameters) acting on
the inertial motion of the i — I frame, nonlinear terms, body forces and torques, control torques, and
reaction loads between link i and link i + 1.

The Eroqedure consists essentially of two phases, the inbound and the outbound. In the inbound
ph??nekolse 3gms at the ’It";'lee efnd, iFT_* N. Since there is no outbound link, the reagtion load?.l frorrA link N
on + I are zero. Therefore, isgivenby F*,, = A q + where
involves only link N inertial parametgrs. NTUNN-1'N-LN-1 N.N-1 NN
Now URN-I,N [.equation (2.1.7.1)] may be solved for in terms of SN—I'AN,N—I'qN-I,N-I’
and By \_, but not 8y Now we are ready to proceed to link N — I and substitute UF N-i N
However, UR N1, must be transformed to the N — 2 frame first. This transformation results in
decomposing (URy, _, ) N2 into three terms: the first involving GN _pithesecond, gy _5 y _p:and the
third, a collection of nonlinear and forcing terms. This decomposition enables one to group these terms
with their counterparts from link N — 1. The resulting equation of motion is

Ly 1Un_1=Fn_y
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Note that in this equation of motion for link N - I, BN does not appear, only éN_ 1 Oy _a ete.

Repeating the procedure by solving for UR‘._I Jfor i =N -2 N - 3, we finally obtain the
equation containing the hinge acceleration of the base link only.

For the outbound pass, beginning at the base link, link 2, we compute 6, , (15) > and {( a'>2)2, then
proceed to link 3 to compute 8,, ( _123) 3 and (. _a}3)3, and so on to obtain all hinge accelerations.

Now we proceed with a detailed description of the model.
2.1 MANIPULATOR WITH ROTATIONAL JOINTS
2.1.1 INBOUND PASS

The translational equation of motion for the center of mass of link i in the i — I frame is (see
figure 2-1 and the appendix)

13 .o

dp.
Z_F_'l.‘—-(-;—tl)i_lzmi(_éi_l+(_4_)ix(_a_)ix_i::)+(w. tw Xz 6’+£i—19i) X-'.':) (2.1.1)

=-t-1"
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Definitions:
(F; I)l _1 = theinertia forces developed inlink i inthe ¢ — 1 frame
(N; '1171 = theinertia torques developedin link : inthe | — 1 frame
(!lf)‘ _1 = the control forces applied at the proximal joint of link i inthe i — I frame
(L— +1£‘Ji _y = the control forces appiied at the distal jointof link i inthe i — I frame
‘[i+l,i )i - = the reaction force exerted on link i bylink i + I expressedinthe { — I frame
Misr i = the reaction moment exerted on link i bylink i + 1 expressedinthe i — I frame
([" 1 )‘ = the reaction force exerted onlink ¢ by link i — I expressedinthe i — I frame
(g, )l = the reaction moment exeried on link i bylink i — / expressedinthe ¢ — I frame
(f‘ﬂ‘ _1 = the position vector of the i frame relative to the i — 1 frame and expressed inthe i — ! frame
n 4 1”' _y = the control torques applied at the distal jointof link i inthe i — I frame
(Q'UI _ = the control torques applied at the proximal jointof link ¢ inthe i - 1 frame
K, El‘ 1 = the external forces applied at the center of mass of link i inthe i — I frame
N Ell 1 = the external torques applied at the center of mass of link ¢ inthe i — I frame
Figure 2-1.
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T F. is the total force exerted on the center of mass of link i in the i — I frame. p; is the linear
momentum of the center of mass of link i in the i — I frame.

- E
ZE;‘ _fi+1,i+,f¢_1,i+fl‘ fH.,*‘f (2.1.2)

_ Substituting equation (2.1.2) into equation (2.1.1) yields the following translational equation of
motion for any link i in the i — I frame:

fl—l t +m, (ri xzi—let) —a +[3 +f Ji+1 .[1C —,fxc+1 +EiE (2.1.3)
. . *

gi‘_'mi(gi—l+-(‘-)i—1x5t) (2.1.3.1)

Ei =m, (9:’ X (Qi X-f.’) + (9‘._1 xfi—lei) X-’—i) (2.1.3.2)

The rotational equations of motion for link i in the i — I frame (torque balance about the
proximal joint of link i) are

d
(lei)i_l = (r; xp, + 1,0, )._1 + (9“’)(3"),-_1 (2.1.4)
or

=, 58 .
(qui)z—I =r,Xmuys + (Ii)i—l @ tw X (I.')i_l-(‘.’,‘ (2.1.5)
= = 2.15.1
(1i>l._1 -Ri—l,iIiRt,i—I =J, ( )
(Z'Iyi)i_z TR TR +N +P i XFieni (21.5.2)

t _nE L rE _p*

Ni =N+ XEZ B X[ =it (21.5.3)

The rotational equation of motion for arbitrary link i is:

» * .o 2. » * » ¢ -
n . +mr X{r Xz O)—J. z. 0.)=a.+ﬂ‘+r,xﬁ.—N.+rAXa.
1, [ g1 d ] -i—-1"1 i\=i-1"14 =i Si i S -1 =i -1

T = (2.1.6)
*
L TEPR SRS (PP
=dJ o (2.1.86.1)
i—~i-1
= [Ql._lx_?;‘._lel.] to xJ o (21.6.2)
Equations (2.1.3) and (2.1.6) may be combined and written in the following matrix form:
SU =F, (2.1.7)
13 i I

U, —[U. Li “i]z[,f.‘—z,im fiigi@ £ ® n_ (O 8 @) é.i]T @.1.7.0

-

There is no reaction torque in the drive direction.

S, =1-2, zT A z, zT -z zTJ" (2.1.7.2)

i,i-1

ghere I'is a 6 X 6 identity matrix, Z is its last column and J? is the actuator inertia associated with
inge i.

. Ut 0 (2.1.7.3)
F;‘—Ai,i—lqi—l,i—1+Bi,i—t+ l * p xfl

0 i+l
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A (2.1.7.4)
ot 8] g m [2]
[ ad ] it [ 3 e
v,
(*1—1).
¢ . 8 i1 (2.1.7.5)
i-1,i-1 ( .
@ _,)
¢ i-1
c ¢ E
A -‘?i i Pl PO _Ei
B .= . . . (2.1.7.6)
' B +r xB, -N,

[I]isa 3 X 3identity matrix, and [7,*]is a skew symmetric matrix associated with o

Since the formal structure of equation (2.1.7) has been defined, consider link N (the link at the
free end) and make use of the following boundary conditions:

f
'r"N’N'H =¢=0 (2.1.8)
EN N+
L,2s (2.1.9)
N~ N T

Therefore, equation (2.1.7) applied to link N is
FN=AN'N__1qN_1+BN,N_I (2.1.108)
GiéLi" , Vi=1,2, . N (2.1.11)
UN =GNF'N (2.1.12)

Although the expression for GN was obtained in equation (2.1,12), ON cannot be computed until
Uy_yandwy , are. Therefore, proceed to link N —  and set up equation (2.1.7) fori = N — 1.

When transforming ( URi _1 ;) into the i — 2 frame, the following recursive relation is used:

—pT * - (2.1.13)
(qi,i)i_l =P (qi—l,i-—l *0ina +0i,i—l) , Vi=12,..N
o, =62 2.1.13.1)
| @, (¢, xE])
o . = . (2.1.13.2)
i1 -@,_ Xz, _,0 .
~i- ~i-1"
1 -[E]
pT = (2.1.13.3)
[ ¢ I
Iisa 3 X 3 identity matrix, and [_I?;* ] is a skew symmetric matrix associated with p X
R
Un_in r ,
0 =(AN.N—1)N_2PN-1 (qN-2+°N_1,N_2+0N-1,N-2)

N-2
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) N-LN
= +|p°
Fy_1=Ay_in-29n-zn-2TByvoanva? Py XIn 1w
N2 N-2
R
Un_in , - R
0 = By an-1YOnAN v BN 2N 1](qN_I,N—z)N_2+RN—2,N—IYGNBN,N_1
N-2

=R, T 2.1.14
Ayn_2=By_an_1¥On Ay N-1BN_on- ( )

* — T
Ay n_2=Py_1Ax n_2PN_1 (2.1.15)
BN,N—ZzRN_Q,N_IYGNBN N-1 (2116)
By n_2=Pn_1Byn- 2+ANN 2ON_1,N-2 2.117

The superscript T denotes the transpose operator.
R . P
-1,
R .= o (2.1.18)
T A

i-1,i

Obviously, upon substituting for UR N1 N Oto equation (2.1.18) fori = N — I, we get

* .

X +B +A

-
FN—I_(AN—I,N—-Z+AN,N—2)qN—2,N—2+BN—1,N—2 NN-2T AN N-2ON_1N-2

Since A*y v _20n_; N_2188 function of é.N—l only, it can be moved to the left-hand side to

combine with its counterpart from link N — 1.

Thus, in general, the equation of motion for any link i takes the following form:

LU, =F, (2.1.19)

L =S -A, 22 (2.1.19.1)

F, =A:,i—1qi-1 i1 +B:,i—1 (2.1.19.2)
A=A VAL (2.1.19.3)
Al =PRI v,,G AL R P (2.1.19.4)
B, =B, ,+Bl .., (2.1.19.5)

it =PiB it AL 1% (2.1.19.6)
P i¥in1CintBlor (2.1.19.7)

2.1.2 OUTBOUND PASS

Assume a prescribed base motion. In this case, v;, @ @, and (v;,@,) are given. First compute F,
and then solve for 9 from the following equation.
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7
92—22 G,F, (2.1.20)

Once 62 is obtained, (gz)z and (92)2 can be computed. This completes the outbound
computational cycle for the base link. Next we can move on to link 3 and repeat the same sequence —
namely, compute F3, 93, (vg) 3 (wg) 3 04, etc,, until all hinge accelerations are determined. Then we
proceed to the integration phase.

2.2 MANIPULATOR WITH TRANSLATIONAL JOINTS

Some manipulators contain a mixture of translational and rotational joints. The procedure
developed in the previous section for rotational joints is still applicable with slight modifications of the
expressions involved (using the kinematics for translational link). These expressions include U A
Oi 1 O i P ﬁi' and _gi”‘. If we denote these variables by a prime to distinguish them from their
rotational counterparts, we get

' * A (221)
8= mi(gr)i—l X (Qi-I xi’i) 29, Xsi—lei)
. (2.2.2)
B =e_xXJe_,
" 2 223
U, = [,f:‘-z,i(” fii @ 8, (D B2 -'5.'-1,1(3)] (22.3)
c c E
, -[-3! _-[z T i+l +El
B. . = . (2.2.4)
[,i—1 * . , ¢
B, +r,xp -N,
: 5:‘—161’
o = (2.2.5)
¢
" Qz_zx(-:-zxfi)+25’;‘-1x5i-16i (2.2.6)
Bi-1" p o
Z,=[001000f 227D

The remaining variables are defined as in the rotational joints case.
Therefore, the equations of motion for any link i may be written in the following form:
LU =F.
i i L
where the formulas obtained in the rotational link case still hold. Note that the only distinction

between rotational and translational joints is through the use of either B.B* U0, ., , 0 *i_pandZ,
for rotational links or B/'.B*, u'\o,,_pe*, ,_,and Z/ for translational links.

J
2.3 TOPOLOGICAL TREE

The case of a manipulator with tree topology does not alter the formulation in a fundamental
manner. In fact, only the root links must be treated differently.

Consider the system shown in figure 2-2. For any branch b,, we can proceed as in the open chain
case until the root link is reached. Denote the root link by K; hence,
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srancu (1) (& z @

Figure 2-2.
1 2 m
R _ R R (2.3.1)
U ) —(UR ) +(U ) +...+(U )
( KK+1), KK+1), KK+1), KK+1),
Recall that in the open chain case ( Ui ; R)i was transformed to the i — I frame and expanded in terms
* * !
of A i+1,i—1’qi—1,i—1’and3 i+1,i-1
Therefore, we get
1 2 m
uR ) =(UR ) +(UR ) +...+(UR ) (2.3.2)
( K, K+1 K-1 K.K+1 K—1 K K+1 K—1 K. K+1 K1
or
mooL
iy = * 2.3.3
AK,K—I =Agk_1?t _ZI Ak+1,K-1 ( )
J:
e |
4 = 3 2.3.4
By k-1 =Bgk1* _ IBK+I.K—1 @34
J=

For any j, the definition of A”K+1,K-1 and B'jKH,K_’ is the same as that of the open chain.
3. ALGORITHM SUMMARY AND COMPUTATIONAL EFFICIENCY
3.1 OPEN KINEMATIC CHAIN

Start at the freeend, i = N.
3.1.1 INBOUND PASS

Repeat the following sequencefori = N,N — I, .. .:
1. Compute A* 1 i_jand B*t+1,i—1 (may be skipped for link N).
2. Compute A*, ,_, and B*,

e
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3. Compute L,and G,
4. i=1i - landrepeatuntili = 2.

3.1.2 OUTBOUND PASS
Prescribed base motion: Yy, @, @, and v, are given. Repeat the following stepsfori = 2,3,.. N.
1. Compute either F or F'i=D.
2. Compute 6,.
3. Compute(w;) and(y;) .
]
4. i=i+ Iandrepeat stéps 1 through 3.
3.2 TOPOLOGICAL TREE
3.2.1 INBOUND PASS

Apply the open kinematic chain procedure to all branches until the base node is reached in this
case.

. . . .
1. Compute A™/p , » ,andB ‘k+1K-1°TA ' k1 x_1andB T k+1, k-1 forall
J=1,2,..., mwhere m is the number of branches at the base node.

* »
Compute A"y  ,and B KK-I

Repeat steps 2, 3, and 4 as in the open chain unless another is reached; in such case, repeat
steps 1 and 2.

3.2.2 OUTBOUND PASS
Nochange.

3.3 COMPUTATIONAL EFFICIENCY

The number of multiplies is equal to 258N — 119, and the number of adds is equal to I9IN - 83,
where N is the number of links.

4. CONCLUSIONS

A general %rocedure for the formulation and solution of the equations of motion for a rigid
manipulator has been presented. This procedure includes a solution for the tree topology. The
extension to a closed kinematic chain follows naturally. However, the presentation of this extension is
pending formal implementation and verification.
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APPENDIX
LINK COORDINATE FRAME AND NOTATION

We adopt a dynamic reference frame. This frame is used here with the Denavit and Hartenberg
convention (ref. 3). The joints are points of articulation between links and are numbered such that
joint i connects link i — I and link i. Consequently, joints i and i + I are the proximal and distal joints,
respectively, of link i. Each link i is assigned a Cartesian coordinate frame, (. x,¥;2;), which is fixed on
the link and therefore moves with it. (See figure A-1.)
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JOINT i + 1
DISTAL JOINT

LINK i +1

JOINT i ‘
PROXIMAL JOINT

Figure A-1

The z, axis is the axis of the rotation/translation of the distal joint of link i. The x, axis is directed along
the common normal fromz, _, toz; They, axis equals z; X x, to complete the r1ght handed system.

In order to associate a particular vector with the coordinate frame, an indexed parenthesis notation is
introduced as follows.

(0; )i ;= the link i relative displacement with respect to and expressed in the i — 1 frame

(P* i; ). P the position vector of the i frame relative to and expressed in the i — I frame

To relate two neighboring coordinate frames, a transformation from the i — I frame to the i frame is
defined as successive rotations of 6, about the z;_jaxis followed by ¢, about the x; axis. (See figure A-2))

This is denoted as
Ri"._lzRotxi((pi)Rotz z<8‘)

[ -

cos 0. sin 6 0
‘ : (A.1.1)
= —cos¢; sin 6, cos ¢ cos B, sin$,
sind)isinei —sind)l.cosel. cos P,
-1 _poT  _
Ri,i—-l_ Li-1" Ti-1i (A.1.2)
a.cosf.
i L
(P') = a.sin@. (A1.3)
-1 i-1 i L
s

LINK §

LINK -1

Note: Whenthe z, _, and 2, axes are aligned, it implies that 6, = 0.

Figure A-2
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The following is a set of standard kinematic relations (see figure A-3) for the motion of a rigid body
relative to a moving reference frame.

6. iflink iis rotational

2 6. )
(93) _ { =i-1"1 and (9_')3) - { -i—-1"1i (A.2.1)
i-1 0 i-1 0 iflink i is translational

(w,)_, RELATIVE

(P")_ RELATIVE

Figure A-3

(8) , =lo o 9.-]?_1 (A22)
(Qz‘)‘._, = (93)‘._1 "[0 0 éi]l_T_l (A.2.3)
(Q.i)‘._, :(é’s)i_, = [0 o 5,-]7_1 (A.2.4)
(‘4’:‘),._, = (g—)i—l)i_l * (9’),'_1 (A.2.5)
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